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It has been shown that in light scattering experiments with polymers replacement of a solvent by a
solvent mixture causes problems due to preferential adsorption of one of the solvents. The present
paper extends this theory to be applicable to any angle of observation and any concentration by using
the random phase approximation theory proposed by de Gennes. The corresponding formulas provide
expressions for molecular weight, gyration radius, and the second virial coefficient, which enables
measurements of these quantities provided enough information on molecular and thermodynamic
quantities is available.

A few decades ago, research in the field of light scattering was focused to the interpre-
tation of results of light scattering in ternary systems such as that of one polymer dis-
solved in a mixture of two solvents. It was recognized by Ewart, Roe, Debye, and
MacCartney1 that application of a solvent mixture instead of a pure liquid resulted in an
incorrect value of the molecular weight of the polymer under study. This discrepancy is
of practical importance since determination of molecular weights of exotic polymers
insoluble in pure solvents necessitates solvent mixtures or solvents with an additional
third component. This is the case, e.g., with poly-benzyl glutamate where hydrogen
bond breakers must be added to ensure solubility, and polyelectrolytes which are al-
ways dissolved in the presence of a buffer. An explanation based on the concept of
preferential sorption was proposed by Debye1 and studied carefully by many ex-
perimentalists. The experimental results can be interpreted by using the theory of scat-
tering by multicomponent systems established by Stockmayer2, Kirkwood and
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Goldberg3 and adapted for mixed solvents by Read4. So far the problem has been
limited to the zero-angle scattering and infinitely diluted solutions, which is thermody-
namically simple and useful for molecular weight determination. The results were ex-
pressed in terms of the Flory5 and Huggins6 theory of the free energy of mixing.

The aim of the present paper is to extend these results to any concentration of the
constituents and any angle of observation using the Random Phase Approximation the-
ory developed by de Gennes7.

THEORETICAL

Thermodynamical Aspect of Problem of Scattering by Polymer Mixtures

Following Flory and Huggins5, let us use a lattice model. This is an artifice to describe
the phenomena, but it does not limit the validity of the results. Each site of the lattice
has a volume v0 equal to the volume of a solvent molecule. The polymer molecule of
species i occupies zi sites; hence it has the volume vi = ziv0. Denoting the total number
of cells of the lattice as NT, that of solvent molecules as N0, and that of molecules of
species i (where i varies from 1 to p) as Ni, and the volume fraction occupied by species
i as ϕ i (ϕ i = ziNi/NT), we get

NT = N0 + ∑ 
i = 1

p

ziNi (1)

and

ϕ0 + ∑ 
i = 1

p

ϕi = 1  .

For the scattering volume to equal unity it is sufficient to define NT as v0
−1, which gives

NTv0 = 1.
It is known8 that the intensity I scattered by an incompressible medium formed by p

different polymer types is expressed by the simple formula:

I = C ∑ 
i = 1

p

∑ 
j = 1

p

(ai − a0)(aj − a0) Sij(0)  , (2)

where C is a constant, and Sij(0) is the value of expression (3) extrapolated to q = | q | = 0.
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Sij = 
1

NT
 〈  ∑ 

k = 1

zi

∑ 
l = 1

zj

exp −iq . (rki − rlj)〉   . (3)

The index zero refers to what is considered the solvent and the indexes i (1 ≤ i ≤ p)
refer to the individual p species (different from solvent) present in the solution. The
Sij′s are called the partial structure factors relative to species i and  j and are normalized
to be intensive quantitites. The ai values are polarizabilities of the individual species i
that are related to the increment of refractive index (dn/dϕ i) which is the derivative of
refractive index of the solution with respect to the volume concentration ϕi of the con-
stituent i (the volume concentrations are used here instead of weight concentrations to
obtain simpler calculation). Using these notation we get:

ai − a0 ≈ 2n0(∂n/∂ϕi)v0  , (4)

where n0 is the refractive index of solvent.
Owing to the symmetry of problem, Sij(q) = Sji(q), the number of unknown functions

is (1/2)p(p + 1) since the incompressibility hypothesis allows elimination of the partial
structure factors concerning the solvent. Application of the classical theory of scatter-
ing leads to Eq. (5) or (6) for the Rayleigh9 constant R of the system (the ratio of the
intensity scattered by the unit volume to the incident energy entering this volume):

R = 
4π2

λ0
4  n0

2ν0 ∑ 
i = 1

p

∑ 
j = 1

p
∂n ∂n
∂ϕi ∂ϕj

 Sij (5)

or

R = 
K
NT

 ∑ 
i = 1

p

∑ 
j = 1

p

νiνjSij (6)

with K = 4π2n0
2/λ0

4 and νi = ∂n/∂ϕi  .
In these formulas, λ0 is the wavelength of the incident beam in vacuum and n0 is refrac-
tive index of the system. Equations (5) or (6) offer the use of a matrix for Sij which will
be denoted as [Sij] (ref.10). For zero angle, thermodynamics provides the following ex-
pression:

[Sij(q = 0)] = kBT 




∂2gc

∂ϕi ∂ϕj





−1

  , (7)
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where gc is the free enthalpy per cell or per volume of one solvent molecule, kB is the
Boltzmann constant, and T stands for the absolute temperature. The superscript –1 indi-
cates the inverse of the matrix.

Let us introduce the excluded volume parameters vij (ref.11) defined as:

vij = 
1
v0

 ∫ 
0

∞

{1 − exp [−Uij(r)/kBT]} 4πr2 dr  , (8)

where Uij means the average interaction energy between units of type i and j at the
distance r in the actual solution. Hence

1
kBT

 = 
∂2gc

∂ϕi ∂ϕk
 = vik  , (9)

1
kBT

 
∂2gc

∂ϕi
2  = 

1
ziϕi

 + vii  . (10)

Introducing Eqs (9) and (10) into Eq. (7) gives10:

[Sij]
−1 = 


















1
z1ϕ1

 + v11

v21

…

vp1

    

v12

1
z2ϕ2

 + v22

…

vp2

    

…

…

…

…

    

v1p

v2p

…

1
zpϕp

 + vpp


















  . (11)

The excluded volume parameters being known, the only problem is evaluation of Sij, i.e. of the
inverse of matrix. As long as the number of constituents is low, this presents no problem. For
application of the Flory–Huggins theory it is sufficient to replace vij by χij values using the
relations:

vi = vi0 = ϕ0
−1 − 2χi0   and   vik = vki = ϕ0

−1 + χik − χi0 − χk0  . (12)

Random Phase Approximation

The theory summarized in Eq. (11) is rigorous and shows that the determination of the zero
angle scattering requires the knowledge of the second derivatives of the free enthalpy
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of system. It is important to extend this theory to the scattering at any angle, i.e., at any
scattering vector q, | q| = q = (4π/λ) sin (θ/2) (where λ is wavelength of the scattered
light in the medium and θ is the observation angle). The problem was solved in 1972
by de Gennes7,12, who developed the so-called “Random Phase Approximation”
(R.P.A.). We are not going to derive the respective formula, and we will give the re-
sults without proof.

For introducing the q dependence let us introduce the form factors Pi(q) of each
species present in the scattering medium (except for the solvent, which is considered a
small molecule): the form factor is defined by Eq. (13):

gi(q) = ziPi(q) = 
1
zi

 ∑ 
k = 1

zi

∑ 
l = 1

zi

〈exp −iq . rkl 〉  . (13)

These equations have been normalized in order to have P(0) = 1, or g(0) = zi.
Replacing each term ϕizi by ϕigi(q) gives the R.P.A. equation for multicomponent

media, which represents a useful approximation although it neglects the concentration
fluctuations. This remark is not intended to justify the result; it is just a short way to
write the scattering equation without any proof.

Let us now write explicitly the formulas valid for systems of two components
(polymer and solvent) and three components (two polymers and solvent). In the former
case (a and 0 for polymer and solvent, respectively) it is:

R−1 = 
1

Kνa
2





1
ϕaga(q)

 + vaa




(14a)

and, within the framework of the Flory theory,

R−1 = 
1

Kνa
2




1
ϕaga(q)

 + 
1
ϕ0

 − 2χa0



  .

(14b)

In the latter case with two polymers (a and b) and solvent (0), we shall first simplify the
expressions as follows:

xa = ϕaga(q)  ,    xb = ϕbgb(q)  . (15)

Adopting Eq. (11) will give the well-known expression (16) for the Rayleigh factor
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R = K 
νa

2xa + νb
2xb + xaxb[νa

2vb + νb
2va − 2νaνbvab]

1 + vaxa + vbxb + (vavb − vab
2 )xaxb

  . (16)

These formulas are written in terms of zi = vi/v0 and volume fractions ϕ i. For expressing
the concentrations in mass per unit volume we have to introduce the specific mass
ρi (ci = ρiϕ i), replace νi by ∂n/∂ci = νi/ρi , and introduce the molecular weight Mi =
ρiziNA/NT where NA is the Avogadro number.

Problem of Preferential Adsorption

When treating a mixture of solvent 0 and polymer b as a single component, we have to
subtract the scattering by the solvent mixture from that of the solution. This scattering
can be obtained assuming that ϕa = 0 and keeping ϕb and ϕ0 constant. The resulting
intensity is denoted as Rb,0

′  since it is not – strictly speaking – a Rayleigh factor.

Rb,0
′  = K 

νb
2ϕbgb(q)

1 + vbϕbgb(q)
 = K 

νb
2xb

1 + vbxb
(17)

with

∆R = Ra,b,0 − Rb,0
′ (18)

or

∆R = Kxa




νa0 − νb0 

xbvab

1 + vbxb





2

 




1 + vbxb

1 + vaxa + vbxb + (vavb − vab
2 )xaxb




  . (19)

NB: It was possible to use Rb,0 (which is equal to Rb,0
′ /(1 – ϕa)) instead of Rb,0

′  which is
usually done for binary mixtures by writing Eq. (20) instead of Eq. (18):

∆R = Ra,b,0 − Rb,0
′ /(1 − ϕa)  . (20)

At low ϕa values both the equations give the same result, the difference between them
becoming important only at high ϕa values, a region to be discussed later in this article.
The main advantage of Eq. (19) is its form of the product of two expressions, one of
them being a perfect square and easier to handle.
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In the following, Eq. (19) will be used considering the mixture of polymer b and
solvent 0 as a new solvent (called s) and new quantities will be introduced, viz. ϕs = ϕ0 + ϕb

(the volume fraction of the mixed solvent) and u = ϕb/ϕs (which defines the volume
fraction of polymer b in solvent s).

Preferential Adsorption Coefficient

If the system behaves as a two-component system, Eq. (19) can be written using only
the refractive index increment νas between the polymer a and the solvent s (solution of
species b in solvent 0) defined as νas = νa0 – uνb. At low concentrations it is:

∆R = KϕazaPa(q)νas
2 (1 + ϕa … )  . (21)

In fact, introducing νas changes Eq. (19) to the form (22) valid for any concentration,

∆R(q = 0) = Kxa




νas − νb0 − 

xbvab − u(1 + vbxb

1 + vbxb





2

 




1 + vbxb

1 + vaxa + vbxb + (vavb − vab
2 )xaxb





(22)

which could be written as

∆R = Kxa[νas − νb0Λ]2 



1 + xa

va − 
vab

2 xb

1 + vbxb






−1

(23)

with

Λ = 
xbvab − u(1 + vbxb)

1 + vbxb
  . (24)

Λ is the coefficient of preferential solvation; it can be evaluated either by thermody-
namic arguments (as shown by Casassa and Eisenberg13–15) or by geometrical argu-
ments16 at the limit of ϕa = 0.

Another way of introducing the differences between systems formed by two and
three components is Eq. (25) (as in the case of a simple solvent):

∆R = Kϕazapp{νas}
2 {1 + ϕa … }−1  . (25)
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This introduces an apparent molecular weight zapp for the constituent a, which would be
obtained if the systems were not considered a three-component one. The relation between
Λ and zapp following from Eqs (23)–(25) reads as follows:

Λ = 
νas

νb0



√ zapp

za
 − 1



  = 

xbvab − u(1 + vbxb)
1 + vbxb

  . (26)

It is interesting to express Λ in terms of Flory’s theory; assuming q = 0, this will lead
to:

Λ = 
ϕb

ϕ0 + ϕb
 
zb −1 + zb(χab − χb0 − χa0)(ϕ0 + ϕb) + 2χb0zbϕb

1 + zb

ϕb

ϕ0
 − 2χb0zbϕb

  . (27)

Replacing zb by gb(q) in order to visualize the q dependence of scattering leads to

Λ = ϕ0ϕb











[gb(q) − 1]

ϕ0 + ϕb
 + gb(q)




χab − χa0 − χb0

ϕ0 − ϕb

ϕ0 + ϕb





ϕ0 + ϕbgb(q)(1 − 2χb0ϕ0)









 (28)

or rewritten in terms of u and ϕa:

Λ = u(1 − u) 
gb(q) − 1 + (1 − ϕa)gb(q)[χab − χa0 − χb0(1 − 2u)]

1 − u + ugb(q)(1 − 2χb0(1 − u)(1 − ϕa))
  . (29)

For low ϕa values (dilute solution) the term (ϕ0 + ϕb = 1 – ϕa) can be replaced by unity,
which reduces (after extrapolation to q = 0) Eq. (29) to the result obtained by Read4 by
application of the Stockmayer2 theory of scattering in multicomponent mixtures. (There
is a small difference in the form of the results which is due to the differences in the
definitions of the interaction parameters.)

Hence, the scattering by a ternary system can be transformed into the same mathe-
matical form as that by a binary mixture: the system is considered as one polymer
dissolved in a mixture formed by the other two components. An artificial refractive
index difference is introduced through the definition of Λ. It depends on thermody-
namical and optical parameters, and if the Λ parameter is adjusted as a function of
concentration, the result is valid for any composition of the system.

It was shown13,14 that at low concentrations the value of νas – Λνb0 is directly ob-
tained if the solvent used for measuring ν is in thermodynamical equilibrium (e.g.,
through a semipermeable membrane) with the solution. This result was explained by
assuming that the composition of the solvent inside the coil is different from that far
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away from it. Hence for the refractive index difference it is necessary to adopt the
refractive index of the dissolved molecule increased by that of the solvent adsorbed in
its vicinity. This explanation is quite successful for small ϕa values but fails in the case
of solutions with concentrations above the critical concentration of overlapping ϕa

∗

since in this concentration range it is impossible to differentiate between the inside and
the outside of a dissolved molecule. Nevertheless, the same mathematical form for the
scattering intensity can be used at any concentration.

The result just shown can be considered an alternative presentation of the Random
Phase Approximation and is subject to the same limitations since it (as a mean field
approximation) fails when fluctuations are important.

It should be noted that the polarizability of the various constituents of a mixture is
more complex than the scattering length in the case of neutrons. This means that the
approximation used (which linearizes the relation between polarizability and refractive
index) can sometimes be too crude; in such cases the formulas should be modified to
remain correct.

DISCUSSION

What Affects the Value of Λ Parameter?

When does the preferential adsorption disappear? The first interesting problem is to
find the conditions which must be fulfilled in order to suppress the preferential adsorp-
tion or to make Λ = 0. Equation (27) shows that three conditions must be fulfilled
simultaneously: (i) zb = 1 (the solvents 0 and b have the same molar volume), (ii) χa0 = χab

(the interaction of the polymer a with solvent b is the same as that of a with 0), and (iii)
χb0 = 0 (the solvents are thermodynamically identical). If they are fulfilled, the beha-
viour is normal and the solvent mixture can be treated as a single solvent.

Effect of molecular weight of polymer a. Equation (29) suggests that Λ is independent
of molecular weight. This was verified by Strazielle16 using the system of polystyrene
dissolved in benzene–cyclohexane mixture, but the law is not general, and there are
cases when it is violated (Dondos and Benoît17, Hert et al.18).

Effect of solvent composition. At low ϕa values the Λ factor is the product of ϕ0ϕb ≈
u(1 – u) by a slowly varying term independent of the polymer a. For 0 ≤ u ≤ 1 the plot
of Λ against u resembles parabola (Λ = 0 for ϕ0 = 0 or ϕb = 0). This type of behaviour
was observed by Read4 and Strazielle and Benoît16 in a polystyrene–benzene–cyclohexane
system, but it is rarely measured since it is common to use the precipitant of polymer a
for the solvent b.

Effect of zb. At very high zb values, if the solvents are identical except for the size, it
is Λ = 1 – u, which means that the refractive index increment to be used is νa0 – νb0

instead of νa0 – uνb0 (i.e., for large zb values the scattering of b is so large that that of
the solvent 0 can be neglected).

Interpretation of Preferential Adsorption 1649

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



Effect of Concentration, Size Difference, and Quality of Solvent on Λ and 
on Scattered Intensity

Equations (19), (20), and (22) allow a qualitative discussion of the scattering aspects
that can be observed in various experimental situations.

Effect of solvent quality. It is known that the scattered intensity increases to infinity
at the spinodal (Eq. (30a) or (30b)).

1 + vb0xb = 0 (30a)

1 + va0xa + vb0xb + (va0vb0 − vab
2 )xaxb = 0  . (30b)

This does not mean that the system has two spinodals but only reflects the fact that Eq. (23)
summarizes the result of two scattering experiments, one for “solvent” and the other for
“solution”; in both cases one has to work in a single phase mixture. It also would be
appropriate to discuss the effect of solvent quality considering the values of va, vb, and
vab parameters or those of Flory’s χa0, χb0, and χab parameters. Such discussion must be
delayed until these formulas can be compared with experimental data.

Radius of Gyration and Second Virial Coefficient

Radius of Gyration

It is known that, for polymer solutions, the inverse representation, R–1(q) as a function
of concentration, is often more convenient. If used for Eq. (23), it gives

K
∆R(q) = 

1
{νas − νb0Λ}2 





1
xa

 + 
va + (vavb − vab

2 ) xb

1 + vbxb





  . (31)

Since xa is equal to ϕazaP(q), this equation has exactly the same form as the correspond-
ing equation for a binary mixture. It allows us to define an apparent radius of gyration
and a second virial coefficient. As for the radius of gyration, it can be seen that when
neglecting the dependence of Λ on q (assuming that the polymer b is of low molecular
weight), the apparent radius of gyration is equal to the real radius of gyration which is
measured in one solvent as long as the solvent b has negligible dimensions compared to
the wavelength of the incident light. If this is not the case, the Λ parameter will depend on q
and introduce changes in R2 – value of the radius of gyration of the polymer a around
its centre of mass8. This effect will probably be small. This disagrees with Yamakawa’s
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results19,20 and is probably due to the fact that we use Eq. (18), subtracting Rb,0(q) rather
than R′b,0(q). Another interesting point is the behaviour at large q values. In this case,
the arguments developed in ref.21 show that the scattering curve is independent of the
interactions. The calculation for a Gaussian chain will give Eq. (32) for xa at high q

1
xa

 = 
1
ϕa

 




q2a2

12
 + 

1
2za




  , (32)

where a is the length of statistical element. Using this value and a similar value for the
polymer b we obtain Eq. (33) at high q values

K
∆R(q) ≈ 

1
(νas − νb0Λ)2 

1
ϕa

 
q2a2

12
  . (33)

The polymer b does not appear since its contribution has been suppressed by the sub-
traction of the solvent. The result is similar to that for a simple solvent, the only dif-
ference being the necessity to adopt, as in the case of low angle scattering, the apparent
refractive index increment which depends on Λ.

Second Virial Coefficient

The case of the second virial coefficient is also very simple: relation (34) is obtained
from Eq. (23) if the Λ term is independent of concentration; but Eq. (29) shows that this
is generally not true.

(A2)app = (A2)a0 − 
2(A2)ab

2 cbMb

1 + 2(A2)b0cbMb
(34)

Equation (34) could be corrected, which, however, leads to a long expression which is
only useful in cases related to experimental results. From Eq. (29) it can be seen that
for A2b0 positive and large the effect of the denominator becomes important: it makes
the mixture a less good solvent than the pure solvent 0 for polymer a. The apparent
value (A2)app can also depend on q when Pb(q) decreases below unity; it introduces an
increase in (A2)app especially in the cases of good solvents when the numerical coeffi-
cient in the denominator is larger than that in the numerator.
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CONCLUSION

The paper shows that the use of the “Random Phase Approximation” completes and
substantially improves the results obtained earlier; it should be used for careful studies
of ternary systems. It would have been interesting to show with various examples the
consequences of these formulas on the interpretation experiments, but the number of
parameters is too large to make a systematic inventory of the various cases; this work
will be done in subsequent papers when presenting experimental results.

The authors would like to thank Miss E. K. Mann for her help correcting their approximate English.

REFERENCES

 1. Ewart R. H., Roe C., Debye P., MacCartney J. R.: J. Chem. Phys. 14, 687 (1946).
 2. Stockmayer W. H.: J. Chem. Phys. 18, 58 (1950).
 3. Kirkwood J. G., Goldberg R. J.: J. Chem. Phys. 18, 54 (1950).
 4. Read B. E.: Trans. Faraday Soc. 56, 382 (1960).
 5. Flory P. J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca 1953.
 6. Huggins M. L.: J. Am. Chem. Soc. 64, 1712 (1942).
 7. de Gennes P. G.: J. Phys. 31, 235 (1970).
 8. Higgins J. S., Benoit H.: Polymers and Neutron Scattering. Oxford University Press, London

1994.
 9. Stacey K. A.: Light Scattering in Physical Chemistry. Butterworths, London 1956.
10. Benoit H., Benmouna M., Wu W.: Macromolecules 23, 1511 (1990).
11. des Cloizeaux J., Jannik G.: Les Polymeres en Solution. Les Editions de Physique, Les Ulysses

1987.
12. de Gennes P. G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca 1979.
13. Casassa E., Eisenberg H.: J. Phys. Chem. 64, 753 (1960).
14. Casassa E., Eisenberg H.: J. Phys. Chem. 65, 427 (1961).
15. Eisenberg H.: Biological Macromolecules and Polyelectrolytes in Solution. Oxford University

Press, London 1976.
16. Strazielle C., Benoit H.: J. Chim. Phys. 58, 675, 678 (1961).
17. Dondos A., Benoit H.: Makromol. Chem. 133, 119 (1970).
18. Hert M., Strazielle C., Benoit H.: Makromol. Chem. 172, 169 (1973).
19. Yamakawa H.: J. Chem. Phys. 46, 973 (1967).
20. Yamakawa H.: Modern Theory of Polymer Solutions. Harper and Row, New York 1971.
21. Benoit H., Joanny J. F., Hadziioannou G., Hammouda B.: Macromolecules 26, 5790 (1993).

1652 Benoit, Strazielle:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)


